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ABSTRACT 

This article presents a survey of recent points of view on the principles of correct analysis 
of DTA measurements, and discusses the relationship between isothermal and non-isothermal 
kinetics and the applicability of individual methods of kinetic data evaluation. The thermo- 
physics of the glassy state is also considered with regard to possible kinds of relaxation 
processes. The practical use and reliability of DTA in studying crystallization processes in 
glasses is discussed in detail. 

INTRODUCTION 

The crystallization of glasses is a complex process which may proceed in 
several stages. These stages, as often cited, can consist of nucleation and 
crystal growth controlled by either short-range diffusion or interfacial chem- 
ical reactions; also by phase separation, structural relaxation and delocali- 
zation, long-range diffusion and viscous flow, heat transfer, etc. Under set 
circumstances, conveniently described by constitutive equations [1,2], the 
slowest stage acts as the rate-limiting step determining the function f(a) in 
the assumed simplified rate law & = k( T)f( (u). In most heterogeneous reac- 
tions the rate-controlling process takes place at the interface (either sharp or 
diffusional) between phases. The speed at which the interface moves is then 
responsible for the overall reaction rate and gives rise to various types of 
mathematical modelling. It has been shown [3,4] that certain analytical 
functions apply in the simple form of two power exponents (1 - a)“C or 
(1 - a)“[-ln(1 - a)]” ( ana o 1 g ous with homogeneous kinetics, where m and 
p are equal to zero). From a kinetic point of view the interfacial area plays 
the same role as that of concentration in homogeneous reactions [5]. Prob- 
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lems of the location and possible lack of statistical distribution of discrete 
activated states along such interfaces may, however, rule out the validity of 
an Arrhenius-type rate constant, k(T) 163. Similarly, a narrow range of 
temperature is necessary to satisfy the nucleation-~owth frequency [7] 
which contradicts the requirement of a broad temperature interval, needed to 
compensate for the mathematical consequence of kinetic data interdepen- 
dence, called the kinetic compensation effect [S]. 

It is obviously easy to criticize the present kinetic procedures for not 
sufficiently characterizing the reality of crystallization processes. However, 
the substitution of this phenomenological model by another kinetic proce- 
dure, which would equally easily yield certain numerical parameters, is 
difficult. It is because we want, although cannot always achieve, a compari- 
son between them. Finding an optimal compromise between our inability to 
fully express the crystallization mathematically and the real extent of our 
efforts to obtain a certain, even if often oversimplified, picture, is the most 
difficult point of solid-state kinetics in general. Therefore, for the sake of 
realizability, we do our modelling in terms of geometrically well-defined 
species [9], although there is often little coincidence with visual, complemen- 
tary observations (morphology) [4]. 

Evaluating the quantitative dependence between the particular glass be- 
haviour under isothermal conditions and general crystallization theory is 
difficult in itself and, thus, its combination with non-isothermal measure- 
ments is often felt to be another unsolvable complication. Kinetic studies 
carried out under constant heating are often considered a delicate field as far 
as obtaining reliable physical data is concerned and are the frequent subject 
of criticism, particularly from those studying classical isothermal procedures. 
It is worth noting that many drawbacks are justly criticized, for example, the 
effect of self-heating of samples during crystallization which, however, 
equally appears in isothermal measurements but which is seldom the object 
of experimental detection. On the contrary, non-isothermal DTA provides 
direct evidence of the extent of such temperature deviations. DTA may thus 
provide us with all the necessary data for describing crystallization dynamics 
which, however, are conditioned by our ability to solve the rather complex 
relationship between the measured (AT,,,) and desired (A-H) quantities [4]. 
The wide use of DTA for the determination of kinetic data is mostly based 
on an oversimplified plot of In ATDTA vs. l/T [lo] to determine E or on 
describing the peak symmetry [ll] for determining the power exponent. 
Uncritical applications of such mathematical treatment to the most com- 
plicated case of studying solid-state reactions can be compared to the 
application of this kinetic procedure to evaluate any arbitrarily drawn peak. 
This is by no means possible in comparable caloric studies, where further 
experimental (calibration constant) and material (C, data) specifications are 
inevitable [12]. It is understandable that the kinetic use of DTA has become 
the target of severe criticism [13-161. 
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Because there is too much contradictory information in the literature, it is 
worth analysing the problem of the reliability of DTA-obtained kinetic data 
in more detail. Particular interest can be paid to the following three points: 

(i) a glassy sample and its investigation, 
(ii) theoretical background of DTA, and 

(iii) non-isothermal kinetic analysis. 
The listing of problems is important, since it can be considered that the 

field of non-isothermal kinetics has developed within two more or less 
characteristic branches of science; namely, thermal analysis, where non-iso- 
thermal kinetics serves as an analytical treatment, and material science, 
exhibiting more practical applications. The excellent article by Yinnon and 
Uhlmann [17], critically reviewing the applicability of non-isothermal meth- 
ods, can be shown as an example of confusing the physical meaning of time 
and temperature derivatives of the extent of crystallization [18,19], which 
was discussed less recently and already rejected on pages of thermoanalytical 
journals [2,20], and again well analysed by Kemeny and Gramasy [21]. 

ISOTHERMAL VERSUS NON-ISOTHERMAL KINETICS 

There is no basic difference between the kinetic description of isothermal 
and non-isothermal reactions [l-4,12]. In both: cases the same constitutive 
equations are applicable, i.e., lu = h( cy, T), p = T( (Y, T), differing only in the 
expression for i; i.e., zero or constant (the effect of thermal history, 
mechanical treatment or heat self-production can equally be included). This 
isokinetic hypothesis means that we can use the same assumption which has 
the practical result of achieving different extents of crystallization assuming 
an equivalent time interval [2]. This is similar to the difference accounted for 
in the construction of T-T- T (transformation- temperature- time) and C- T 
(coding- transformation) diagrams [ 221. 

It should be stressed that the extent of crystallization, (Y, itself is not a 
state function of temperature and time (i.e., (Y # &( T, t)) like its derivative &. 
Therefore, any additional term of the type (dh/dT),, sometimes required to 
correct the non-isothermal rate [17,18,20,23], is unjustified and thus invalid 
[3,24]. This, in fact, is a long-discussed puzzle introduced by McCallum and 
Tanner as early as 1970 [25], recently reapplied to the JMAYK 
(Johnson-Mehl-Avrami-Yerofeev-Kolmogorov) equation ([ - ln(1 - a)] = 
kiTjtP) [17-19,231 and thus appropriately recriticized [2,21]. 

The simplest description of crystallization kinetics is usually made in 
terms of only two macroscopic variables, a and T. However, phase sep- 
aration, /3, as a general property of most glasses, may also be encountered in 
practice, although this is not yet appreciated in kinetic models [4,26] because 
of the experimental difficulty in the parallel determination of its numerical 
values. Furthermore, two mutually independent functions, f(a) and k(T), 
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are used for analytically expressing the rate equation and are considered as 
experimentally verified. This is not generally true, as shown, e.g., for coupled 
processes [27]. The success of this approach depends further on a proper 
analytical expression of individual functions [28] which is usually based on 
long-established models of isothermal reactions and their consequent in- 
tegration and derivation [4,12]. Henderson [29] excellently discussed all 
possible problems connected with the transfer of isothermally derived mod- 
els to non-isothermal conditions. It was pointed out, however, that the 
formal theory of crystallization must not be generally isokinetic. Sestak 
[4,26,30] and De Bruijn et al. [31] mathematically analysed the integration 
procedure of the basic nucleation-growth equation under non-isothermal 
conditions and showed that the temperature dependence thus obtained is 
similar to that obtained on classical isothermal treatment. The same ap- 
parent activation energy and characteristic power exponents can, in princi- 
ple, be determined which differ only in the value of the pre-exponential 
factor, depending on the process itself and the numerical approximation 
employed. 

For a general relaxation process the exponential form of the Arrhenius 
rate constant, expressing the probability of successfully moving from an 
initial glassy-liquid to a final crystalline state, should be valid for all 
thermally activated crystallization processes, where either diffusion and/or 
interfacial chemical reactions are effective. The term k(T) is then composed 
of the pre-exponential factor, Z, describing the frequency of attempts to 
overcome an energy barrier E, called the activation energy. If non-activated 
heat transfer becomes the rate-controlling process instead of k(T), the 
non-exponential heat transfer coefficient, A(T), should be considered. For a 
narrow temperature interval of reaction, E and Z are found to be interde- 
pendent, considered [28] to be virtually the mathematical consequence of a 
functional correlation of the type 1 vs. l/T [8]. This compensation effect 
can be avoided by using k(T) related to a reference point, conveniently 
called the isokinetic temperature [8], T. Then k(T) = Z exp[ - E/R( T - Ti)] 
which assumes the form of the Vogel-Fultcher-Tamman equation already 
recommended for describing the crystallization of glasses [18,29]. 

PRINCIPLES OF CORRECT ANALYSIS OF DTA-BASED DATA 

Average commercially produced DTA apparatuses can be described in 
terms of a double non-stationary calorimeter [4,32], in which the thermal 
behaviour of the sample and reference materials, usually placed in thermally 
insulated cells, is compared. From the balance of thermal fluxes the DTA 
equation can be established [32-351 which relates the measured quantity, i.e., 
the difference between the reference and sample temperatures, To - T, = 
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A Gn-A Y 
versus the required reaction rate, d:: 

Similar analysis yields the DSC equation, which now applies to the com- 
pensation thermal flux, A& supplied to specimens [4,32] 

where, however, the originally assumed difference, AT,,,, now serves as a 
regulated quantity only in the sense of being as close to zero as possible. For 
well-established measuring conditions the effect of the last two terms of both 
caloric equations can be neglected (i.e., heating rate, #, change in thermal 
capacity, AC,, change in heat transfer, AK, and in heat conductivity, AA, 
and the temperature difference between the sample and surrounding mantle, 

Fig. 1. The effect of heat inertia. A typical macro-DTA recording [38] (- - -) using a 
Netzsch apparatus (recording sensitivity of 0.1 mV/250 mm with Pt-R/13% Kh thermocou- 
ple or 0.4 mV/250 mm using the measuring head modified by Pallaplat thermocouples, 
heating rate 10 K min-’ (0.166 K s-l), sample weight 0.15 g (metallic glass ribbons 7 mm 
wide and 30 pm thick, of composition Co-Ni-Fe-S-B) wound [38] inside the Pt-cell (2 g, 
r = 12 mm); the remaining void was filled with powdered AlaO, and/or Ag. The corrected 
DTA peak is also shown (- ), according to the DTA equation (apparatus constant 20 mJ 
K- ’ s-‘> with a manual scanning of ~nimum 26 points followed by computer evaluation 
(Video Genie, Basic). The S-shaped curve illustrates the actual profile of the DTA peak 
background [which is subtracted from the originally recorded DTA peak (- - --) to obtain 
the corrected peak (- I]. 
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Wkll,,,~ are constant and can thus be included in the baseline) [32]. A 
simple proportionality between the DSC recording and the rate of reaction 
holds, whilst the similar DTA relationship contains an additional term 
arising from thermal inertia [4,32,35]. It is evident that the usual plot of the 
logarithm of peak deflection versus the reciprocal temperature can only be 
used in the case of DSC, while for DTA, a modified form should be used: 

lnWnrNDTA + CPAibrA) vs. 1/T, which has, however, rarely been ap- 
plied in practice 130,361. Consequently, a simple derivation of the extent of 
reaction by simply relating the partial vs. total areas of a DTA peak is 
misleading unless an actual S-shaped background to the peak is found [37] 
(cf. Fig. 1). It can easily be verified that the maximum deviation between the 
as-scanned and corrected peaks occurs at the inflection point. This certainly 
causes difficulty for simply applying evaluation methods based on the fixed 
extent of reaction taken for multiple DTA peaks measured at different + 
values. On the other hand, the popular Kissinger method fll] remains valid 
because at ti = 0, Ai’= 0 and AT,,, = Q:,,, providing, of course, there is no 
change in the thermal capacity of the material investigated, which is often 
fulfilled during the crystallization of glasses. 

In contradiction to DSC, during any DTA experiment the heating rate is 

Fig. 2. The effect of actual temperatures. The originally recorded DTA peak (cf. Fig. 1, 
- - -) is redrawn to the scale of real temperatures, T = Trca, (i.e., Tieal = TIinear + ATnrA, 
-) [38]. The S-shaped curve illustrates the course of the instantaneous values of heating 
rate (if the temperature deviations due to the DTA peak are accounted for in the ideally 
constant heating rate of 0.166 K s-l). 
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actually changed because of DTA deflection, which is also a direct measure 
of the deviation between actual and predetermined temperatures. At the 
moment when completely controlled thermal conditions of the sample are 
reached, the DTA peak disappears demonstrating well the contradiction 
between non-stationary DTA measurements and the steady (equilibrium-like) 
conditions assumed in non-isothermal kinetics. From the actual course of 
real heating rate, as illustrated in Fig. 2, it follows that a certain shift in peak 
temperatures will occur when the original peak is redrawn on the actual (i.e., 
Treal = Twin + AT,,,) temperature axis. The best solution to avoid such 
disagreement between a DTA and a non-isothermal kinetic analysis may be 
found through a double-derivative equation of the form [4,39] 

iiT 

ti? 

df(a)/dcu T2dr + E 

f(a) T R 

valid for true instantaneous values of (Y and T and their derivatives (& ti, ii-) 
detected for the entire sample. This is in contrast to the convenient parame- 
ters used so far, where T and $ (= f) are replaced by their extrapolated 
ideal values. Practical applicability is, however, very difficult, even though a 
computer-aided evaluation is available [39] and the possible scatter of 
derivatives can be smoothed by spline fitting [38]. 

APPLICABILITY OF EVALUATION METHODS 

The value of individual methods of kinetic data evaluation should not be 
over-emphasized [12]. .These methods rank into two groups, using single or 
multiple non-isothermal runs, and can be based on two different procedures, 
requiring either three-fold input data ((Y, dr, T) for the primitive rate law, or 
two-fold data ((Y, T) for the integrated form of rate equation. The latter 
method is presumably less laborious, but is also less sensitive regarding both 
experimental errors (iu is avoided) and model relation distinguishibility 
[40,41]. In particular, the analytical forms of jdcu/f( LX) = g(a) overlap each 
other for different rate-controlling processes [4] which, as shown first by 
Sestak [42], makes it practically impossible to distinguish the power expo- 
nents, p, in the JMAYK equation [40-431. The actual evaluation through 
integral methods is comparatively easy but it requires certain assumptions 
about the behaviour of the exponent-integral [4]. Broido and Williams [44] 
diagnosed exactly which integral methods yield the most accurate data by 
dinstinguishing the accuracy of individual polynomials hidden in exponent- 
integral approximations. For instance, with the most common plots: In g(a) 
vs. In T, AT or l/T, the last plot is more accurate than the second and first, 
which are still within the accepted limit of + 10 refl.% of E. For the JMAYK 
equation, however, often less sensitive double-logarithmic plots result. Tang 
and Chaudhri [45] have shown that the plot of { ln( 1 - a) - p ln[ - In( 1 - a)]} 
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vs. (Y within the range 0.25 < (Y < 0.75 is almost constant [17] and thus the 
least applicable for manipulating the original equation to find two parame- 
ters on a single strain-line fitting. A slightly more sensitive way is the use of 
the expressions [ln{(l - a)[ - ln(1 - a)]“}] [5] and/or [n ln(l - LX) - m In LX]. 
A more detailed critical examination of the various methods which are 
currently used to analyse dynamic experimental data is recently surveyed in 
refs. 4, 17, 29 and 43-45. 

Among the most convenient methods are those which are based on the 
fixed extent of crystallization, (Y,, which, for a series of traces taken at 
different heating rates, +, allows a plot of ln(T*/+) vs. (l/T,) to be made 
(e.g., an Ozawa [46] or Chen [47] plot). Similar to the above approach is the 
method of Kissinger [ll], fitting a straight line to ln(+/r,,,) vs. (l/T,,,) for 
the maximum reaction rate, &,,,. Despite its extensive discussion 
[17,21,23,29,45], the work of Come1 et al. [48] is worth noting as they derived 
a generally valid equation for 4 at ti = 0 (although limited to a simplified 
case of a one-parameter model): 

+= -k(T)[df(a)/dcu]r/[d In k(T)/dT] +[d In f(a)/dT],). 

Eliminating $I and transferring the equation into the general equation of the 
rate for amax (assuming that f(a) = (1 - a)” is not T-dependent) it follows 
that [48] 

which finally gives 

(&#Jmax = -(WG,,)(1- a)/n 

Considering the two-parameter model (m # 0, n + 0) the validity of the 
above equation can be similarly generalized to hold for [49] 

(&#J_ = -(WG,)Ml - 4l/M~ + 4 -4 
These equations are valid more generally even for any point (Y, and demon- 
strate that the slope, iu,, of a kinetic curve is really related to the kinetic 
parameters E, m and n [50]. Consequently, it can be shown that the value of 
a,,,,, varies with +, as dealt with in detail by Tang and Chaudhri [45]. The 
temperature of maximum reaction rate, T,,,, is then dependent upon the 
heating rate applied as given by Come1 et al. [48] for m = 0, n > 0 in the 
form of the equation 

dWdL,, = k(T)@ + 2nRL,,)/E (for m = 0, n > 0) 

which is close to the classical Kissinger plot derived for unimolecular 
reactions. For a generalized case of m # 0, n f 0 a rather complicated 
relationship can be obtained, where the simple constant n is replaced by the 
sum (m + n) and the whole term assumes the form of a series multiplied by 
II/HI and (Y. Fatu and Segal [50] applied a similar analysis assuming the case 
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when the reaction rate is itentionally kept constant. Such isokinetic condi- 
tions seem advantageous for either the determination of E without taking 
into account the analytical form of f( CX) or for the establishment of f( CX) from 
the shape of the isokinetic curve, with the ability to distinguish between one- 
(n) and two- (n, m) parameter models. Such conditions are experimentally 
difficult to achieve; the closest approach is quasi-isothermal derivatography 
introduced by the Pauliks [51]. 

In conclusion, the mathematical procedures themselves should also be 
noted as responsible for a possible discrepancy in the reported kinetic data 
obtained with various assumptions, where a straight-line fitting is carried 
out. Popular logarithmization is a typical example, where the required 
Gaussian normal distribution is deformed, e.g., when (1 - CX) increases 
ten-fold, the transformed quantity, ln(1 - a), decreases only twice and thus 
originally independent errors also change. It follows that the quality of the 
resulting data depends on the type of regression analysis applied (i.e., linear 
regression or linear regression with weights or even non-linear regression 
with one non-linear parameter [4]). On using the Hotelling x2-test, Archan- 
gelski et al. [52] showed that kinetic data are also statistically non-equivalent, 
and recommended a hypothesis test to distinguish their significance or 
non-significance [4]. 

THERMOPHYSICS OF GLASSY SAMPLES 

Glasses obtained by a suitable rapid cooling of melts are in a constrained 
thermodynamic state which tends to transform to the nearest, more stable 
state on reheating. The well-known dependence of a sample’s extensive 
property vs. temperature then best illustrates the possible processes which 
can take place during the temperature change [4]. A most convenient 
diagram is that of AH vs. T which can be derived using the lever rule from a 
concentration section of an ordinary phase diagram [24,53,54] (see Fig. 3). 
Upon reheating, the unstable glassy state first undergoes glass transition 
followed by separation of the closest metastable crystalline phase [54]. On 
attaining a temperature at which another non-crystalline phase of the first 
melt may appear, the formation of stable crystals is initiated. If considering 
a more complex case, for example the existence of another metastable phase, 
the sequence of processes becomes more complicated, since the metastable 
phase is probably produced first to precipitate later into the more stable 
phases. This, in fact, gives us an idea of what kind of equilibrium back- 
ground [24] is to be considered for the processes. Thus, the partial reaction 
steps, experimentally observed as individual peaks, are classified to fit the 
scheme chosen in accordance with the type of phase diagram related to the 
sample composition. It is evident that the majority of crystallization processes 
are of an invariant type [4,24,55], i.e., the equilibrium background changes 
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Fig. 3. An illustrative method for distinguishing the possible processes taking place on heating 
glass. The first column shows a hypothetical binary phase diagram with stable (- ). 
extrapolated metastable (- - -) and glassy (. - ’ - .) states marked. The vertical line (0, 0) 
of characteristic temperatures shows the composition in question. The second column gives 
the dependence of enthalpy change vs. temperature derived from the preceding phase diagram 
by means of the lever rule. (. . . . .) The possible course of consequent processes taking place 
on normal heating of the glassy state (G) through the metastable (B, B’) and stable (A + B) 
crystalline states into a liquid (1). The boundary lines (- - -, -) actually express the 
limiting metastable and stable cases attainable under extreme conditions of the ultrafast or 
ultraslow cooling or heating, respectively. The temperature derivative of this course (dAH/dT) 
resembles the DSC and/or DTA (AT uTA) recording, each peak corresponding to the 
individual processes exhibited by steps in the AH vs. T plot. The last column shows the 
corresponding, hypothetical T-T-T (transformation- temperature-time) diagram with the 
stable and metastable crystal areas again bounded (- and - - -, respectively). The 
thin hirozontal lines correspond to the characteristic points (melting, glass transformation) 
and the shaded area illustrates the existing region of quenced-in nuclei. (. . . . +) Indicate 
either preparation method (1) [chill block melt-spinning and/or twin roller quenching (with 
two resulting separate cooling rates, the bottom raw)] or annealing procedures in the 
isothermal (4) and flash (heat pulse: (3)) modes or reheating under different heating rates (2). 
The T-T-T diagram is important as it introduces the time factor which in the otherwise 
equilibrium-like plot of AH vs. T cannot be included, although the point of the departure of 
the glassy state is dependent upon the experimentally attained rate of cooling/reheating. The 
above representation can be modified for any more complicated (or multicomponent) system 
as, e.g., shown in the bottom row with a polymorphic transformation of the B + B’ type and 
two glassy regions (G and G’). 

stepwise from unstable/metastable to metastable/stable states. Beside the 
prediction of consecutive and/or coupled reactions, it has an important 
consequence for the equality of isothermal and non-isothermal degrees of 
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crystallization [4,24] and thus the applicability of previously described 
kinetic models. 

An equally hypothetical model, but also very useful for gaining an overall 
picture of reactions which may occur during crystallization, is a diagram of 
the Gibbs (free) energy for the various phases vs. composition [I%]. Depen- 
dent on concentration, the transition of unstable/metastable into metasta- 
ble/stable crystalline phases can proceed by one of the following reactions 

[4,56,57]: 
(i) polymorphic crystallization (i.e., supersaturated alloy formation without 

any change in concentration); 
(ii) primary crystallization (increase in concentration until a metastable 

equilibrium is achieved); 
(iii) eutectic crystallization (i.e,, a simultaneous, often discontinuous, 

crystallization of two stable phases). 
Because of the finite cooling rate of rapidly quenched thin sections of 

(usually metallic) samples, they are regarded as partially annealed (cf. 
T-T-T diagrams in Fig. 3). Assuming the last stage of their uncontrolled 
cooling, which effects the experimentally detectable differences in their 
physical properties, Ratajczak and Stobiecki [58] classify the resulting relaxa- 
tion processes in three different categories: 

(i) reversible changes, where the reproducible changes of the measured 
property proceed in one direction on rising and in the opposite direction on 
decreasing the annealing temperature [59]; 

(ii) crossover effects indicative of switches from one annealing regime to 
another, where the observed change of the measured property does not 
follow either extrapolated course, but often exhibits an intermediate {local) 
extreme [57]; 

(iii) logarithmic kinetics, if the property change varies linearly with the 
logarithm of isothermal annealing time. 

The above effects are of particular importance in the modern field of flash 
annealing of metallic glasses by ultrafast heat pulses [60,61] which can 
replace the traditional furnace treatment (cf. Fig. 3). 

The model recently proposed by Gibbs et al. [62] is worth noting. 
Activation energies of a relaxation-causing process, which are ready to 
contribute to the experimentally detectable changes of a physical property, 
are distributed over a certain spectrum and the corresponding characteristic 
anneaiing functions can be substituted by a step function. For as-received 
samples all types of relaxation processes are possible. After pre-annealing for 
a certain time and at a given temperature most structural distortions are 
removed leaving a more narrow distribution of the available activation 
energies, which is consistent with the latter stages of logarithmic kinetics. 

A deeper knowledge of the crystallization-preceding stages of nucleation 
has become very important, including time-dependent (transient) nucleation 
[63] as well as the athermal behaviour of quenched-in nuclei [57,58]. Other- 



wise, the generally understandable process of glass crystallization is excel- 
lently covered by Koster and Herold [57] and Scott [59], including pertinent 
structural considerations concerning metallic glasses. 

USE OF DTA TO STUDY CRYSTALLIZATION OF GLASSES 

First, we have to assume that an ordinary DTA arrangement can never 
satisfy all the demands arising from specific characteristics of the glassy state 
and the non-isothermal nature of its investigation. DTA itself has developed 
along two more or less separate directions. Micro-DTA, where possible 
temperature gradients are maximally decreased so that it has become a 
useful tool for precisely detecting characteristic temperatures. On the other 
hand, macro-DTA allows the effective measurement of integral changes 
needed in calorimetry. Kinetics ranks somewhere in between, with respect to 
the extremely delicate nature of this type of investigation 1551. 

A relatively large deflection in a sharp DTA exotherm is a typical sign of 
time-located heat production, which is indicative of some crystallization 
processes. Under limiting conditions the heat transfer from the reacting zone 
may become a rate-controlling process in which the reaction rate is assumed 
to depend upon the product of two functions, f(a) and R(T), but where 
R(T), introduced instead of the original k(T), is a non-activated heat 
exchange coefficient proportional to temperature. An extreme example of 
such terminal conditions is an adiabatic process which can be assumed to 
exist when the self-generated production of heat catalyses a very sharp 
crystallization process, where the heat exchange between crystallizing glass, 
sample holder and its surroundings is negligible compared to the narrow 
duration of the reaction. Then the reaction rate becomes directly propor- 
tional to the temperature change, ?, displayed by the sample. 

An essential point is, however, the bulky behaviour of glass which is often 
violated when the glassy sample is mechanically pre-treated, thus causing 
extra lines of metastable surface-catalysed phases to be included in the AH 
vs. T diagram [64]. Glassy samples of shapes, like fibres [65] and/or very 
thin metallic ribbons, should also be treated with increased attention as the 
process of filling a DTA cell can introduce not only additional interfaces 
(cracks), but also unpredictable mechanical tension which may affect the 
crystallization dynamics. For a preliminary evaluation, the tendency of the 
glass towards volume and surface crystallization, an ordinary DTA experi- 
ment can be modified in such a way as to compare the finely and roughly 
pulverized samples placed as DTA specimens via possible changes on the 
otherwise monotonous baseline. 

A simple but very useful method was described by Marotta et al. [66,67] 
for evaluating the effect of temperature on the annealing time of bulk 
nucleation. The number of nuclei formed during pretreatment can be related 
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to the difference between the crystallization peak temperature of an as- 
quenched sample and that of a previously heat-treated one. The plot of these 
temperature differences against pre-annealing temperature gives a nuclea- 
tion-like curve exhibiting a maximum at the maximum nucleation rate. 

The best experimental approach, however, is to investigate a compact 
glassy sample, best prepared by directly quenching the melt in the DTA cell 
[68,69]. For example, Sestak and Strnad [69] analysed a DTA peak for the 
bulk crystallization of 7OSi0,. lOAl,O, . 20ZnO glass cast directly into a. 
cylindrical DTA holder and obtained a very good coincidence between the 
front part of the DTA curve and that calculated on the basis of the JMAYK 
and DTA equations using known data for nucleation and growth measured 
by an independent optical technique [30,69]. 

Such simulation of a DTA peak does not account, however, for plausible 
temperature gradients arising from heat transfer within the sample. The 
existence of such gradients is obvious and is often the reason for the 
above-mentioned large decrease in size of the DTA sample. On the other 
hand, it may contradict the requirement of a negligible sample surface 
compared to its volume. A quantitative estimate of the maximum extent of 
temperature gradients can be found to be proportional to AHp+/(h))“‘* 
multiplied either by S/a or r for the layer thickness S or cylinder radius r, 
respectively [70]. Another approach [71] gives a temperature error, 9, due to 
the difference between the heat released during crystallization and the heat 
escaping along a temperature gradient between the sample and its holder: 
9 = (AH&;G)/X [72], where p, e and h are the density, crystal growth rate 
and thermal conductivity, respectively. 

The difference between a known (artificially introduced) heat pulse and 
the evaluated DTA response best illustrates the extent of temperature 
gradients. A rectangular pulse generated by micro-heating the DTA speci- 
men directly shows clearly that the resulting DTA peak, corrected according 
to the DTA equation, has a shape very similar to that of the original pulse 
thermal gradients, responsible for the remaining deviations [4,32] at the 
frontal and decaying sections. 

CRYSTALLIZATION KINETICS BY DTA 

It should be emphasized again that for practical applications of the most 
popular Kissinger method [ll] apparent values, Eapp = E/p, are obtained 
[41,43] which are similarly effective for any integral method [40,42,63] based 
on the JMAYK equation. It is, therefore, essential to compare only the 
appropriate values of E when they are obtained by different methods. In the 
literature, a large number of kinetic data exists [42,63,65-67,73-921 showing 
either good or poor mutual coincidence [4,12]. In the following table three 
randomly selected examples of heat-inertia uneffected (DSC-based) studies 
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are shown to illustrate the situation. First, isothermal data obtained by either 
classically plotting ln[ - ln(1 - cr)] vs. In t (providing both E and p values, 
case A), or assuming only the time, t,, at which maximum rate (peak tip) is 
attained at a given temperature (plot of A In tm vs. A(l/T) = Eapp [19,28], 
case B) or obtaining non-isothermal Eapp extracted from a Kissinger plot 
(A ln(+/T,) vs. A(l/T,), case C). 

Sample Case A Case B Case C 

E P E/P Km -L, 

CdGeAs [71] 95.4 2.2 43.1 61.1 42.7 
As [18] 50.6 65.2 
Fe,, PI& 1931 104 5 20.8 107 

Spayer and Risbud [71] made a thorough comparison of individual E values 
and reported a good coincidence between data obtained by the Kissinger 
method (C) and those from analysis by the JMAYK equation (A), but only a 
fair agreement with the isothermal maximum-rate method (B). This is in 
contrast to a similar study by Marseglia [19] showing a reciprocal trend with 

&Jr by the isothermal maximum-rate method (B) and the heating-rate 
method (C). Less recently, Scott and Ramachandrarao [93] indicated a good 
agreement between isothermally (A) and non-isothermally (C) obtained E 
values; however, they did not consider the reducing effect of p. Colmenero 
et al. [77] and Marotta and Buri [78] found good agreement between the iso- 
and non-isothermal-based resulted, the first [77] also discussing the treat- 
ment [78] already criticized by Criado [76] as the method ressembling the 
classical method of Piloyan et al. [lo]. Using the Ozawa method [46], Lucci 
and Battezzati [80] also reported a good agreement between kinetic data 
obtained in the two different thermal modes. Surveying such results can be 
continued further, particularly researching the fast-increasing literature on 
metallic glasses [41,77,79,80,84,89,93]. 

One of the most important steps remaining is to finally evaluate the 
experimentally obtained (apparent, E,,,) values of the activation energy in 
terms of the nucleation-growth (overall crystallization, E,,) process in 
order to provide elementary activation energies of nucleation, E,, growth, 
E,, and diffusion, E,. For example, Lucci and Meneghini [79] investigated 
metallic glasses in their as-quenched and preheated states and found that 

&I1 and p are lowered by the presence of preformed nuclei and tend to 
reach constant values corresponding to a condition of zero nucleation rate, 
where Eapp represents, in fact, the entire activation energy of crystal growth, 
E,. From the known correlations between individual E values [4,42,73] the 
overall activation energy of crystallization is E,, = (aE, + bE,)/(a + b) 
and/or E,, = (aE, + bE,)/( a + b/2) [where the denominator equals the 
power exponent of the JMAYK equation, p, and the coefficients a and b 
indicate the nucleation rate (zero, a = 0; decreasing, 0 < a < 1; constant, 
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a = 1; and increasing, a > 1) and the growth dimensionality (b = 1, 2 and 3), 
respectively]; this, however, is an ambiguous procedure introduced and 
analyzed by Sestak 1421 and Ranganathan and Heimendahl[73], respectively. 

To correlate expe~mental-kinetic and more rigorous thermodynamic data 
[4], the approach of Miura and Isa [75] can be considered, when assuming 
the free energy (AGL = EN) of critical nucleus formation during homoge- 
neous-like nucleation ( = 16~ry&/3AG&). For diffusion-controlled crystalli- 
zation (of glassy metals) we can assume that E, = E,, - E, (if E._ = ECR 
= AH#, the activation enthalpy~ and calculate E, by introducing the value 
of Gibbs (free) energy for crystallization ( AGcR) and the solid-liquid surface 
Gibbs (free) energy ( ysL 2: 0.4AH,,,, + 10-‘“N”3(2.1 + v2’3/2)( T- Tmelt), 
where AH, N, V and T are the enthalpy, Avogadro number, molar volume 
and temperature, respectively. 

Matusita and Sakka f68.811 proposed another approach, including a ratio 
factor, z/p, in their model for E, where z arises from the z-powered heating 
rate, (p, as the result of an assumption of non-exponential nucleation, 
proportional to the heating rate only (N = No/$). The activation energy thus 
calculated on the basis of the pre-assumed rate-controlling process (e.g., bulk 
crystallization of Li,O = SiO, glasses, where p = 3 and z = 4) under non-iso- 
thermal conditions, agrees well with that of viscous flow. For such treatment 
the ratio z/p is closer to unity than the original values of p so that a better 
coincidence between iso- and non-isothermal data can be anticipated. The 
course of these derivations has recently been reinvestigated [82] and also 
reconsidered on a more rigorous theoretical basis by Ozawa [83]. 

DISCUSSION 

It can be seen from the preceding sections that DTA-based evaluation of 
crystallization kinetics is a very sensitive procedure. It evidently belongs to 
the methods of a formal (phenomenological) treatment and it thus requires 
further interpretation in terms of the thermodynamics of nucleation-growth 
processes and the structural and morphological description of the elementary 
reactions involved. A good example of a thoroughly analysed crystallization 
process already available is the case of As,& reported by Henderson and 
Ast [74], employing viscosity, microscopy and DSC measurements. Crystaili- 
zation kinetics are satisfactorily described by the JMAYK equation yielding 
a constant power exponent ( p = 4.5) which is interpreted in such a way that 
the nucleation rate is an increasing function of time for specific random 
primary nucleation along the coalescence-caused interfaces throughout the 
bulk of powdered samples, regardless of the initial powder size. Microscopic 
examinations reveal a spherulitic growth habitat with plate-like morphology 
changing at higher temperatures to rod-like growth. Activation energy 
evaluated from DSC measurements is comparable to that derived from direct 
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observation, but about half that for viscous flow, the latter being comparable 
to the activation energy assumed for secondary nucleation. This example by 
no means aims to discredit the many valuable articles dealing with formal 
crystallization kinetics. It is just a warning against both self-satisfaction with 
easily obtainable numerical results and oversimplified explanations of com- 
plex crystallization processes within a suppressed “double logarithmic” 
treatment of usually single-valued data on averaged temperatures 
[5,12,28,29,43]. For an improved interpretation of such thermometric (DTA 
and DCC) measurements we can learn a lot from experimental physically 
detected (complementary for thermoanalysts) magnetic and/or electric prop- 
erties. Such measurements often exhibit a greater sensitivity in distinguishing 
partial reactions (e.g., Stobiecki [87] by measuring saturation magnetization 
determined, for isothermally annealed Fe-B layers, three different crystalli- 
zation regions associated with either the growth of quenched-in nuclei or 
grain growth with constant and later decreasing nucleation rates). Upon 
analysing resistivity measurements [88-921 the authors had to solve the 
problem of how to express the extent of crystallization when the glassy 
matrix is partly transformed during the course of annealing and/or if the 
infinite (starting or final) values of the measured property are not known. It 
was found that the resistivity measurements of Ge,,Bi,,S,, exhibit the 
course of crystallization much earlier than that detected by DTA [91] and it 
was suggested that experimental data should be evaluated without any 
restrictions of the functions g(a) by fitting individual experimental curves by 
the least-squares method [92]. 

In many cases, however, we have to rely on the classical methods of 
kinetic data evaluation, but being aware of certain precautions. For a series 
of isothermal measurements we should take into account possible crossover 
effects [58] which can create discrepancies otherwise difficult to explain in 
terms of an ordinary kinetic description. This can also disturb the annealing 
experiments further investigated under the non-isothermal regime. Quench- 
ing itself may also be regarded as partially achieved annealing (cf. T-T-T 
diagram in Fig. 3) namely, considering quenched-in nuclei. The popular 
logarithmic plotting on the basis of the JMAYK equation may exhibit the 
kinetic compensation effect [8] for a too narrow temperature interval which, 
in turn, disagrees with the approximation requirements for k(T) integration 
[4]. If we were to rely solely on the low sensitivity of In-ln plots to 
discriminate between the individual functional forms, the experimental data 
introduced would have to be of the highest quality which, however, con- 
tradicts the general method of DTA experimentation and the errors associ- 
ated with it, as discussed above. Comparison of a series of non-isothermally 
obtained traces at different + values (in order to extract the desired kinetic 
parameters of an assumed single process) can be affected by procedural 
parameters (sufficiently precise reproducibility of individual runs) as well as 
by both the extent of DTA temperature deviations (AT,,,, cf. Fig. 2) which 
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unfortunately shifts the peak apex (affecting, e.g., the Kissinger method) and 
the advance of the heat inertia (A?‘,,,, cf. Fig. 1) which disturbs the slope of 

a DTA peak in the vicinity of its inflections (affecting, e.g., Piloyan and 
Ozawa methods). 

For the future we can anticipate that the current kinetic treatment based 
on the evaluation of certain kinetic parameters, E and p (n, m), can 
possibly be replaced by an equally formal method of mathematical analysis 
in terms of fitting the whole (or part) of a DTA peak again attempting to 
obtain certain numerical values characterizing the peak shape. The change of 
such constants can then be used for the indication not only of switches from 
one crystallization mode to another, but also of physical processes of heat 
transfer. The present, rather trivial and so far non-gradient treatment of 
kinetic data evaluation, however, contradicts the sophisticated stage of 
computer science and the advanced theory of data evaluation for truly 
non-equilibrium conditions, which is our case of DTA. 
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LIST OF SYMBOLS 

A B 
C* 
C 

d 
E 
H 

f(a), g(a) 
k(T) 
K 

m, n, p 
T 
t 
r 
z 

; 
x 

A(T) 
Y 

components 
heat capacity 
concentration 
derivative 
activation energy 
enthalpy 
kinetic models 
Arrhenius rate constant 
apparatus constant 
kinetic power exponents 
temperature 
time 
radius 
pre-exponential factor 
degree of reaction 
phase separation 
heat conductivity 
heat transfer coefficient 
surface energy 



density 
thickness 
difference 
constant heating rate 

Superscripts 

,. 
function 

. time derivative (e.g., reaction rate, &, actual heating rate, i-) 

Subscripts 

am 
CR 
D 
DTA 
G 

max 
N 

sl 

apparent 
crystallization 
diffusion 
differential thermal analysis 
growth 
arbitrary point 
maximum 
nucleation 
sample 
reference 
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